Object-Oriented Messaging, Command Pattern, and Sta
Pattern in LabVIEW

Paul J. Lotz
Lowell Observatory, 1400 W Mars Hill Road, Flagé®&Z 86001

ABSTRACT
After motivating the investigation by looking atgp@pproaches, we present LabVIEW
examples that demonstrate messaging using obgtisplementation of the Command
Pattern, specifically for an XML configuration fdautility, and an implementation of the
State Pattern, including an example deployed aahtime target. In addition we briefly
mention the concept of Model/View/Controller. Im appendix we compare these
solutions to selected popular approaches.

1. First, some history

| think it is useful to motivate the discussiondxplaining a bit about how we have
arrived where we are.

1.1. “LCOD”

| started to think seriously about these issues afiadingA Software Engineering
Approach to LabVIEW which introduced me to “LabVIEW Component-Orighte
Design” (LCOD). While I don’t remember everythimgthe book (and I no longer have
access to it), | do remember that the authorssscethe concepts bfgh cohesion
(although I don't recall if the authors used tlesm for it or not) andbose coupling In
the broadest terms these mean 1) keep things &rghtt logically belong together and
2) separate things that are logically separable.

| started from the examples and began an implertientaf a component-oriented
system using such an approach.

First, | understood each component should openatependently of its peers. So |
created parallel loops with queue-based commupicdtetween them.

Then | focused on the message content. A partiquieue can send a message of a
single Type. One can send all the Boolean-typeskages, for instance, on one queue—
but this isn’t a logically convenient grouping &t af course. So | decided to explore (as
have others) sending messages with queues cordituseend Variant-typed messages.
On this model the sender flattens the messagdaat&/ariant on one end and the
receiver unflattens it to the original type on tiber. To do this the receiver must know
the message type, so | defined a high-level typkaté¢he message that consisted of 1) a
string with the message name and 2) a varianttweghmessage content. The receiver
looks up the message content type based on theageesame.

1J Conway, J., & Watts, S. (2003).Software Engineering Approach to LabVIEW (Natldnatruments
Virtual Instrumentation Serieg) ed.). Upper Saddle River: Prentice Hall PTR.

July 15, 2010 1

An extension | tried is to write the data to a fiimaeal global variable (FGV) or a set of
FGVs. Now a functional global variable can haveedehavior besides reading and
writing its data, and those kinds of FGVs some tgars call action engines. An FGV
can perform some operations with or on its datasjdy changing state as a result.

Anyway, this was the first major step toward ourrent situation. | will attempt to
explain how and why we moved from this to whereares and explain why | think our
current solution is a logical progression from this

1.2. Object-Oriented analysis, design patterns, and Java
messaging

The next step in my journey was readfygplying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and Iterative/8lopmerit The author talked a
good deal about the principles of high cohesionlande coupling (among others), but
now in an Object-Oriented context, and includedsaussion on design patterns. The
concept of a software component plays a leadingirothis book as well, but now it
becomes easier to see how to implement such a thing

In the world of objects we design for high cohesamdl loose coupling by assigning
responsibility for closely related behaviors (tlsatoperations) to an object. As far as is
practicable the object owns the data it needs itimge its operations.

| read more about design pattern®msign Patterns: Elements of Reusable Object-
Oriented Softwarg(a brilliant book that started the design pattdieis). It turns out
that formal design patterns offer some advantages.
One doesn’t need to invent a design pattern—a dgsgern by definition is
something that others have used successfully—amdutiy described the
implementation.
There is a catalog (actually catalogs) of desigtepas, in which each has a
name, guidance on how and when to use it, and amebe.
o0 Why is this important? Well, because:
Everyone in the field knows what we mean when wetate
Pattern.
There is collective effort on refining the impleni&ton of the
patterns, instead of each developer trying to petes or her own
things.
| think these are incredibly important benefitsiging these Design Patterns.

Notes:

2 Larman, C. (2004)Applying UML and Patterns: An Introduction to Objé@riented Analysis and Design
and lterative Development (3rd Editio(§ ed.). Upper Saddle River: Prentice Hall PTR.
¥ Gamma, E., Helm, R., Johnson, R., & Vlisside$2005).Design PatternsToronto: Addison Wesley.

July 15, 2010 2

Design Patterns ar®t always “simple.” Some are highly stylized. Treeg, |
think, generallyefficientandelegant and so far | have found that they are pretty
simple to implement once | understand them.

Design Patterns are not libraries one can callphtierns one can follow. They
are reusable in that they offleratureways of doing things.

Design Patterns are appropriate when they arecaighdi. We shouldn’t attempt
to use them for everything!

A component is a replaceable module that encagsuitatontents and defines its
behavior via an interfack.

Finally | read about Java messaging systems tlmat alpplications to send objects as
messages. Object messages can be arbitrarily egraptl have very precise definitions
in an inheritance structure (we will see why tisiso® important in a minute). Moreover,
we can decouple the message content (objects)tirermessaging system, which | think
is a subtle but extremely important point.

| decided there was considerable power in all eséhand decided to see if | could do the
same sort of thing in LabVIEW, noting that the coam@enominators for creating
scalable systems seemed to bertoapsulatelata and behavior componentand to
enable some sort ofiessagindpetween these.

2. Current examples
Now we present some examples of what we have lddamnéo with objects in LabVIEW.

2.1. Object-Oriented messaging in LabVIEW

After some false starts | figured out a way to sebgcts in LabVIEW by flattening
them. The key points follow.

2.1.1. Send messages using networked shared variabl e
communication (or other messaging system)

We decided to use networked shared variables tdl&dme messages. This isn't strictly
necessary to send objects, of course—one can UBAH @ethods, queues, or just about
anything,because the messaging paradigm is independeng aiotitentbut we will
discuss the design in this context.

We are implementing a component-oriented desits.nice if we can implement a
component in its own loop, nicer if it residest® dwn method, still better if we can
define that method on a class defining the comppraenl even better if we can deploy it
anywhere. To decouple our components as muchssshb® we want our components to
be runnable anywhere (motivating networked commatiga) and communicate without
knowing anything about the other components or @manting a server (motivating a
publish-subscribe paradigm).

“See Larman, p. 654.

July 15, 2010 3

Briefly, we think shared variables offer the follmg advantages:

- Shared variables are the closest thing in LabVIBW teady-made
implementation of something akin to the Object-Oieel Observer Pattern
(publish-subscribe communication). [Briefly, theewf a publish-subscribe
paradigm allows us to implement stand-alone compisneach of which has its
own state machine that responds to data receisgachronouslyn topics to
which it subscribes, and it publishes data to wleich or more components may
subscribe. A message broker handles all subsmmgpfind message passing, so
the components interface only in terms of datae @mponent need not know
that another component even exists.]

Shared variables are part of LabVIEW—we don’t neeslpend valuable
application development time creating our own mgisgpsystem (which can be
very expensive to do well!). Hopefully this alseams National Instruments
maintains the implementation, fixing bugs and agdeatures.

The shared variable API easily lets us decouplertegsaging system
implementation from the application code.

Networked shared variables work just the same fiteercode point of view
whether we deploy the communicating applicationshensame machine or at
different locations on a network. This means mytialer can respond to a
message sent from a GUI on the same machine dfieaedit machine, or from
another software component running anywhere oméfwork. This turns out to
be incredibly powerful (at least if security contedon’t prevent using this).

In our case we have the Datalogging and SuperviSontrol (DSC) module,
which gives us a built-in logging solution, amonper things. (Again, writing as
good a logger would be very difficult. I'm certbirglad we’re not trying to
maintain the Citadel code.)

Finally, again with the DSC module, applicationa éandle shared variable
value change events. [Aside: | certainly thinlstbarticular functionality should
be part of the LabVIEW core, and | think it would to NI's advantage to make it
so. How can someone have access to shared varlaiil@ot shared variable
value change events? If more NI customers suadgssfeated component-
based applications using shared variables, | sa@fesould sell more LabVIEW
licenses.]

Now there are some disadvantages to shared vagjatdtably that the shared variable
engine and the Citadel historical database selhathe most robust things ever and in
my opinion the various APIs are lacking in congisieand usability in some respects, so
| want to stress this is a good (and improving)rmita perfect solution. On the other
hand shared variable performance (speed and relmbssage delivery) is really quite
good now that they use TCP.

® Note that we can point to the URL for a sharedakde in a different project, so we can put our
components in independent projects if we wish (@adften do!).

July 15, 2010 4

2.1.2. Flatten the object

Each shared variable has exactly one type (muehaligueue), and while LabVIEW does
allow developers to select a custom type, that tgraot be a LabVIEW class type.
So..we flatten the LabVIEW object we want to publish—XblL or simply a string.
[Note: XML is human-readable but | recently encaueatl the issue that the Flatten To
XML and Unflatten From XML functions don’t work cactly if the class definitions
reside in a LabVIEW library (.Ivlib). Using thedften To String and Unflatten From
String functions is currently more robust. HopBfiNI will improve the implementation
of XML in this and other ways in the near futurghis is actually at the top of my list of
desired new features.]

2.1.3. Unflatten the object
Much like the queue with variants method, the nememust unflatten the message to a
specific type. So (as we’ll show), the receiverstrknow:

the type of data associated with the message

the definition of that type.

2.1.3.1. Know the type

Now here is where things really start to get coldhe receiver only has to know the
generictype of the message. In particular, we can gdimera parent message class and
the recipient can cast the received message (ot @hildren) to the parent type. An
example (see under the Command Pattern Examplenaie this much clearer.

2.1.3.2. Share the definitions

We address the definition question by storing tbindions in a single location under
version control. As long as we build the sendet r@teiver applications using the same
version of the shared definitions (which is theunaltthing to do) we know the two can
understand one another.

OK, now let’s see object messaging in action ira example.
2.2. Command Pattern Example

2.2.1. A command is an object

In the Command Pattern each command is an objdwre is an abstract (never
instantiated) class that represents the top-lesincand and then child classes that
represent the actual commands that we can senslilfpowith some layers in between).
For an example | offer a portion of the commanddrehy for an XML-based
configuration files editor | created:

® This approach doesn’t work with RT-FIFO-enabledrsd variables since these don’t support the String
type.

July 15, 2010 5

Each command is an Object

Abstract top-level command

class ConfigurationCommand / /

CorfigurafionConmmand

= shutDovenlsTrue: Boolean

+ axwcutel) : void

fll

Single TargeiCommramd

- data: ConfigurableData

fﬁﬂfv 51 Y}\ '“_‘“L“__

RestoreFromFileCommand Restore Defau Command Clome Command SaveCommand

+ axacutel) ; woid + wopcutal) @ woid + wopcutel) @ woid + axacuted) : woid

Concrete leaf commands

The leaf classes on the bottom row are the aatyaleimented commands. (Note that
each command class has Command in the name.)

2.2.2. Sending the command

So, how does the application work? Let’s say & alseks the Save button on the user
interface.

July 15, 2010 6

B Configuration. lvlib:ConfigurationU]. Ivclass:editConfigurationU]. vi

CormpensatorTimeDomainParameters CompensatorOutputRange TTPRLimitChecks SpecialPositions Position3ensorScaleFactor

LinearPaositionLimitCheck SuppartRing TarsianLimit Calibr ationy alidity PaositionSensorlocation IRGConfig LoopiConfig RICCanfig

miDiameter_m

0 *
sensorAngIeFromXAxis_deg
0 *
sensordngleFromYyAxis_deg
i 2
nbrLinearsensorLocations

1 kS

Current Page

[RestoreFromFiIe] [RestoreDefault] - Save _‘Tg

all Pages

[RestorenllFromFile] [RestoreAIIDeFaults] ’ Savedl] [Closeal]

The user interface code handles that event andsheisithe SaveCommand object to a
shared variable (flattening it firstte-the most general type for the topic

errar in (no error) s
N configCrdsY bt = 7 H errar ouk

. i = b (== :]

ConFigurationLIT in ConfigurationCormmand, beclass L, | F =°

Flatten command to XML
and send as message

ConfigurationJI ouk

ConFigUl
OET

Simple enough, right?

2.2.3. Dynamic dispatching on the command type

Upon receipt of the message the receiver unflattemseceived message to the type of
thetop-level commandhat is, to ConfigurationCommand. (The resultetual typeon
the wire will be of type SaveCommand, howeverh) tflis example the reception is a
shared variable value change event.)

The receiver then invokes tl@nfigurationCommand:executeethod. Since we have
definedexecuteas an override method on each of the commandedadgnamic
dispatching on the command object type determirfeshnmethod actually executes
(SaveCommand:execuia this example).

July 15, 2010 7

Med wvariable value change notification>: User Event ¥

T , ;
ype Cast received message

. T'""“F to parent type

Shared Wariable] Bomeeae | e —
Vil E k
3@:; Type B . Execute | T
Time Stamp E dynamicall -
5 ~~ bhased on T TargaC ety
Guabty ‘—Eﬂb A I i !
D b | actual dala: Contguabialana
b = o

| comtparssoascomenam

F' Choost. Implementation

Seldact VI

¥ ConfigurationCommand. vclass execute.

SavelliCommand. heclags: execube. vi
CloseABC ommand, brodass:execute v
RestorealDef sultsCommand. hiclessexecube. vi
RestoreAlFromFileCommand. hclass:execube. vi

SaveCommand. hdass:execube, v
ClaseCommand hoclass: sxscute. vi
RestoreDefaultCommand brclass:execute. v

nnnnnnnnnnnnn Lot s el kel e o b 3

= [[0] =shared variable value change nobification=: User Event ~———
?pe Cast received message
irne
10 parent 1=
I=rEvtRef Pe wi
Shared Variable
I'.'IalLlE

Execute

T[?;?ST;?:D dynamically
iuality hased on
actual
command

ohject type

g+

Note that the override methods may inherit commeimalvior from a parent or (as in this
case) do completely their own thing.

2.2.4. Add targets and parameters

Moreover, we can add data (e.g., targets or comrparameters) to the commands very
easily—and thelata type can be unique to each command tlass

For instance, let’'s say we have a controller tleatqums the same operation for a number

of devices. Perhaps our controller can turn oni@Vor DeviceB. We might indicate
to turn onDeviceAby including aDeviceAobject in an attribute in thBurnOnCommand

July 15, 2010 8

In the example above we have included the shutDetwnke Boolean parameter in all
commands, and the data attribute (of type Configeidata, which itself has a fairly
complex definition) for all SingleTargetCommands.

The flexibility offered by the generalization (inftance) relationship allows us to make
this highly customizable. In a parallel part of thierarchy MacroCommand has a
subcommand parameter, where subcommand is andr&ggleTargetCommand
command objects.

clas=s ConfigurationCommand /

CorfigurafiomComnnamd

shuthownlsTue: Boolean

+ exmecuta) : woid

/‘ MacraCanrmand l\

‘ - subcommand: SingleTargetCommand (Aray)

= o
AN

RestoreAll FromFileCommand RestoreAll Defaults Command Sawedll Command CloseAll Command

+ execute) : waid + execute): vaid + execute): vaid + execute): vaid

Note that in this case we are writing all types@inmands with any type of data (which
could include the device to which the command &splio asingle shared variabland
that asingle controllercan handle all these messages appropriately.

The Command Pattern further allows the developenfdement undo functionality and
so on, but | think this example is sufficient taahthe essence of the pattern.

2.2.5. Delegation

One last point on the Command Pattern is that tha&rGller determines what to do, but
then delegates all the actual work to the ModetHia case ConfigurableData).

July 15, 2010 9

______ OER

File Edit View Project Operate Tools Window Help

| @ @]| @|[25] [wal@|o | 130t Application Font

SaveCommand in SaveCommand out

'—1_ SaTae
= [TE] Erdtiale

Daty

An object of type
ConfigurableData constitutes
the Model.

error in {no error)

Controller invokes methods on Model

2.3. XML configuration files application
In the end we have a code library we can reuseuilows projects.

July 15, 2010 10

Reusable library

= [& Configuration.hib
: =k [J ConfigurableData
+:__J ConfigurableDataDerivedParameters
[ConfigFileDirectories
+5ﬁ ConfigurableData. kvclass
. i |gd promptOptions.ctl
=) ConfigurationCommand
i d RestorealFromFileCammmand
RestoreFromFileCommand
RestoreAllDef aultsCommand
RestoreDefaulCommand
ClosealCommand
CloseCormmand
SaveslCommand
SaveCommand
SingleTargetCommand
+ MacraConmmand
_ +5ﬂ ConfigurationCommand. lvclass
— [J ConfigurationController
. # [S¥EventInfo
i +“ﬂ ConfigurationController beclass
= [J ConfigurationUl
+5ﬁ ConfigurationUL. lvclass
= [} ConfigurationTabUl
+ 9 ConfigurationTabUl.lvclass

AL AL AL AL AL AL AL AL AL A

-

When we create a new component we define the paéeanhefinitions and create a new
shared variable. The rest of the configuratiossfiipplication code is common.

July 15, 2010 11

Each component defines parameters

B Configuration. Ivlib:ConfigurationUl. vclase e ditConfigurationUl.vi

Corrpancalof TimaDomaine o amshe RSO R DR AR TTPLImdChecks SpncialPosiions PositEonSensor SCanFachor
LinearPorsitionL it Check: < crtRing TorsionLimit Calir stion'v.alidiy PeestionSarsorLocstion ROConfig LoopConifig RICConfig

] Ciarmstar_m
1]

[Restorefromfle | | RestoreDefot || Save |

Al Pages

[RestoreatFroneie | [restorestveisits | | savet || cosem

Common

The application writes an XML file (currently usihgbVIEW'’s native XML tools) for
the parameters on each tab. (Note that we arg XL here just for reading and
writing files, not for communication.)

July 15, 2010 12

File for each tab

<?xml version="1.0" standalone="yes" ?>
- <LVData xmins="http://www.ni.com/LVData">
<\Version>9.0.1</Version>
- <LvVanant>
<Mame >positionSensorLocationConfig</Name >
- <Cluster>
<Mame>positionSensorLocationConfig</Name:=
<NumElts >4 </NumElts >
- «<DBL>
<Name>mlDiameter_m</Name>
<\al>4.30000000000000</Val>
</DBL>
- <DBL>
<Mame=sensorAngleFromXAxis_deg</Name:>
<Val>40.00000000000000 </Val=
</DBL>
- <DBL>
<Mame >=sensorAngleFromYAxis_deg</Name=>
<\Val>40.00000000000000</Val=>
<fDBL>
- <I32>
<MName=nbrLinearSensorLocations</Name=
<Val=4</Val>

= [} M1PCorfiguration
. [MiPConfigurationSubDaty
-"___,' ConfigurationFiles
i & [J Component
L. @ calibrationvalidityConfig. xml
. calibrationValidityConfigDefault. xml
~ linearPositionLimitCheckConfig.xml
linearPositionLimit CheckConfigDef auly

positionSensorLocationConfigDef ault, xml

= positionSensorScaleFactorConfig.xml

& = positionSensorScaleFactorConfigDef ault. xmi

j specialPositionsConfig. xml

= specialPositionsConfigDef ault, xml

specialPositionsInternalConfig. xml

l specialPositionsInternalConfigDef ault. xml
supportRingConfig. xml

] supportRingConfigDefault. xml

1 timeDomainCompensatorParameters, xml

[timeDomainCompensatorParametersODefault, xml
| torsionLimitsConfig.ml
torsionLimitsConfigDef ault. xml

| teplimitChecksConfig.xml

@ ttpLimitChecksConfigDefault.xml <fI32>
compOutputR.angeDef ault, xml </Cluster>
| : compOukputRange. xml </LvVariant>
M1PConfigurationTabll </LvData>

-
- MiPConfigurationTypedefs
w| editConfigurationMain.vi

2.4. State Pattern Example
We'll next present an example of implementing éesteachine using the State Pattern.

2.4.1. Component statemachine

In this example we will consider a statemachinetfierhigh-level status of each
component. The statemachine diagram below shosvpdksible states and transitidns.
(In our system each component also has a detddéehsachine with states peculiar to it.)

" Maybe we should have included a StartupState ftBandbyState and DisabledState. I'm on the
fence about that.

July 15, 2010 13

st OperateCamponent /

Initial

e StandbyState \a\
notes g state

These are the possible states. Mot ewerny The application is domant, but it oz
systemn must actually support all states. In msaord o 2 stk e signa! that will cause) e
particular, DizabladState is optional. the syaten bo fansition to @ funchiona! state exitlsTrue=T Changes the pulished %-@
frence them iz sl 2 thread waning). state o OF amd shats Final
dowir Hre sooliestion

For 3 maldine aoolication ar the oRID, for
exgmale, thiz pmwdes 2 gate fom wivich we
goTeStandbylsTrue=T | o0 cpctively matardt ar aoplication without
Aooting the cRI0. _J./J

anfoletel .

starlzTrue=T

/ goToStandbylsTrue=T
. DisabledState ™

I EnabledState
notes enablelsTrue=T

The systen iz opegting but with Naited
fumctionality. (Forimstamrce, in 2 mobion commd
systen we 3 collectimg ot but e we fave
dizzhled the cortmd foogp.)

notes

disablelsThie=T The systen iz opeatimg momaly (it !
functionzlity). Note that wamings (wilich Ay
definition do not pmohisdt femetforalits) will mot
'\g\.i.rse 2 state tansition frems or anyries).

For sone swhsistens the Dizahled State may
ot fe meamingis and the syster can goTeStandbylsTrue=T
l\t.'\a_n.sﬂ.‘on directy o tre Engbled State. _—I/I

., [faultCondition]
[faultCondition]
clearF aultlsTrue=T
Fault State
A faultCondition is an error returned by any method.

These include:

1) systemn state errors(e.g., a value out of range that
prohibits system opearation)

21 a behawioral malfunction (e.g., a file read ermon.

notes
The systen is mot opeating comally. &
iz pemissiile forthe systerw sl do
coNect datz, hut otherwise itis
dizapled. Worover, the opeaborawst
Fritve emorio rele o ooeaidior.

2.4.2. Each state is a class

Once we have defined the states, we implementsa &ba each state. Each class has
State in the name. Each state implements an exegeithod with a single parameter.
That parameter (of type ComponentData in the examplthe Model.

Note that child classes extend the execute methroeefise or override. This means we
can define common functionality only once on theepg but we can customize behavior
in any child without affecting any of its peersasrcestors in any way. (In this example
we have only one level of inheritance; more wemséiple levels.)

class ComponentState
Componentstate
+ executslComponentData) : void
StandbyState L—] OffState Enabledstate DisabledState FaultState
+ executefComponentData) : woid + execute(ComponentData) : void + executefComponentData) : void + execute(ComponentBata) : void + executefComponentData) : woid

July 15, 2010 14

2.4.3. Dynamic dispatch on the state type
To implement the Controller statemachine we ddolewing:

1.

2.

3.

Initialize the Model with the initial state. Inglexample the initial state is
StandbyState, so we write the corresponding olbgettte Model.

On each loop iteration, the Controller uses theenirvalue of the Model (hence
the current state of the system).

The Controller reads from the Model the currentesfas an object).

The controller invokes the execute method on tpddwel state. The method that
executes is that for the actual state object typthe wire. (So
StandbyState:execute will execute in the first ldepation in our example.)

Note that inside the execute method we set theev@fithe next state by updating the
state object in the Model as necessary.

2.4.4. Delegate

The controller passes the current value of Modh Qurrent state of the system) to the
execute method. The execute method decides widat boit it delegates all the actual
work to the Model, which has the information reegdito do the work and can change
and track its own state as necessary.

July 15, 2010 15

The Model object encapsulateq
its data and behaviors.

/ K‘;
Ny > 4

2.4.5. Exchange data via interfaces

This code executes in one loop iteration. (Theeteemethod is called inside a loop. In
this example the code is running on the RT proaesisa compactRIO and the loop starts
upon the receipt of an interrupt from the FPGAhe Model (state) entem a wireon

the left. (It comes from a shift register on thep outside.) We read the shared variable
values (we have defined the shared variables tohwihis component subscribes in an
interface definition) and data from the FPGA atbeginning of the loop (or wherever
we want, really—the point is we explicitly read th@nce each loop), act on the system
appropriately, then write values to another sethaired variables to which this
component publishes data and to the FPGA. The Mad can change in the process,
but we can look at the code and understand whes&#ppens and probe the Model if
we want to see the current state. Of course thredhvariables themselves—which
together form the external interface--connect tiemral systems without dataflow, but
interactions between the shared variables and tdehare always via wires.

July 15, 2010 16

Read external data (defined on
interface) here...

and write data here. /

2.4.6. Handle triggers

Within the controller we can evaluate any triggetsanging state if appropriate (by
writing the state object for the next state toNwel).

Evaluate trigger Change state if
appropriate

2.5. Model/View/Controller

Since we mentioned these terms they deserve artwief We implement the View (e.g.,
the user interface) as a separate application then€Controller. This allows us to create

July 15, 2010 17

an alternative view or even an external comporfeatt¢an implement the Controller

interface.

The Controller invokes methods on the Model. (Mulel data represents the state of
the system and it has operations to do things tahdata.)

The ConfigurableData Model

‘ ’ class does the real work.

2.6. Appendix: Comparison with queue and functional global

variable implementations

How does this approach compare to some other pogoillations? This section
speculates on some possible comparisons. The istemstimulate discussion.

2.6.1. Queues

| actually think queues offer a reasonable mesgagtion, but are just not as flexible as
shared variables. One reason | prefer sharedblesigs because the topic already
associates to a type, which | think makes sharddhblas easier to manage.

— |

Boolean shared variable namegd
“EnableMotionisTrue”

Moreover, | think shared variables offer all feasiqueues do except for the ability to

reorder messages in the queue.

In the applicatvensrite this feature just isn’t

necessary since our Controllers always return anloap time to handle the next
message. (This is essential for our Controlleiperate effectively asynchronously. So
if an axis move starts the axis controller statghhbe MovingState, but the controller
keeps looping so it can still receive a stop comun#rdoesn’t wait for the axis to finish
the move before going to the next loop!)

Effectively our statemachine controllers implemta preemptive mechanism. For
instance, if an axis is moving and the controlémeives a stop command, the controller
stops the axis; it doesn’t wait for the move tasim

July 15, 2010

18

Next, shared variables can work across a netwar&ygs don’t) and | think this is a
major advantage.

Finally, using a publish-subscribe protocol alldwsher decoupling of the components
from one another and from the messaging systene. sliared variable engine handles all
the connections.

”

2.6.2. Functional global variables and “action engi nes

| first saw a functional global variables (FGV)dade | inherited about a decade ago. At
first FGVs confused me. Then | figured them oud awas still confused when | tried to
understand how they worked in a particular appglecat Writing this document helped to
clarify why.

| already knew that | wasn't especially fond of el for functional global variables
(they look like regular Vs on the outside, althbugf course one can customize the icon;
one often has to specify both an operation anghénameters via at least two inputs,
which just takes a bit longer to comprehend; & Ist of work to make the inputs
polymorphic and clumsy to write a single value idlaster as an alternative; it takes a
somewhat sophisticated developer just to undergtangoint of using uninitialized shift
registers with a single-iteration loop). No ondlase APl concerns, though, constitutes
my biggest confusion point.

Let’s illustrate what | think is the biggest isdmeputting a functional global variable in a
loop in myApplication.

Suppose someone gave us this code and the cong/F@V. (The “actions” are write,
read, increment, and decrement.)

July 15, 2010 19

Then this person asked us what the expected behavitVe might answer that the value
on the chart on each iteration will be one intagdue larger than on the last. This will
be correct, in fact, if myApplication is the onlgg@ication running. On the other hand, it
is entirely possible some application somewhere islghanging the state of the system.
The increment action implicitly includes read anatevactions.

/

read write

We can implement this “action engine” simultanegussiother applications, and each of
these can change the state. As examples, | drettterApp and otherApp2, either of
which can change the state. The implementatiatr@rApp is

July 15, 2010 20

and of otherApp2 is

Well, in order to know what the output will be IMeato know that otherApp and
otherApp2 exist, whether or not they are runnimgl #he details of what they do—not

just the read and write actions but also the iner@mand decrement actions and any other
arbitrarily complex actions we add, as well as wtiey do these actions.

This in itself isn’t necessarily bad, actuallymight say that myApplication is just
reading a value on an interface every 500 ms acrénmenting that value. We could
make the Object-Oriented equivalent.

On the other hand, let’s say we wanted to do tweratpons on the data.

July 15, 2010 21

We can do this easily enough with objects.

We can try this with FGVs (but in a moment we gdplain why this is not suitable.)

Or maybe we want to use this functionality withantexternal interface.

Again, we can implement an Object-Oriented solution

We can again attempt a solution with FGVs.

July 15, 2010 22

These applications are simple to implement withvlpte objects but the functional
global variable approach is not appropriate fdnegiof these needs.

Strictly speaking, it is possible to code somethiriilp a functional global variable (as
shown) that can work in these instances but siacetional global variables do not use
dataflow
1) One has to use sequence structures, error wirgsnoe similar mechanism to
ensure things happen in the proper order (incoeveriut certainly not a deal
breaker). More importantly,
2) The implicit read and write functioms every call to the FGYvhean that the state
of the model can change at any time via a calhé¢oRGVanywhere in scope

The consequence is that just when we thought weeheapsulated the data and behavior
we found we don’t have encapsulation at all.

It doesn’t take much before this gets out of hamdl\®e don’t know what the application
does unless we have achieved a certain level ofsmence with respect to the
implementation of all the applications. Now ommsce may be a good thing, but it is
not something | possess or want another developexgect of me, so | try not to expect
it of anyone who might read my code.

| think that the problem with “action engine” FG\sthat we have mixed
communication and operations. We can’'t meaningftiéate an interface for
myApplication or its kin and as a consequence wgt ¢arn it into a proper component.

In practice, | think FGVs are OK (although stilltrthe best option because of the
limitations of the API) as long as we just use tresrglobal variables (their original
purpose), that is, for communication. Once we ather state-changing actions in them
we obfuscate the application code, precisely bexasviolate the principles of tight
cohesion and loose coupling in a very bad way—we h@ know what every other
application in scope is capable of doing!

July 15, 2010 23

| think LabVIEW by-value objects offer a much betpproach t@ncapsulationand |
think the LabVIEW object APl makes these a lot eat develop and maintain.

Moreover, LabVIEW objects supparnheritance which offers a great deal more power
and flexibility. They also have the advantage @hlg a leading programming paradigm.

Since we have begun using LabVIEW objects with asaging system here, we no
longer use FGVs anywhere in our applications.

July 15, 2010 24

