
July 15, 2010 1  

Object-Oriented Messaging, Command Pattern, and State 
Pattern in LabVIEW  

 
Paul J. Lotz 

Lowell Observatory, 1400 W Mars Hill Road, Flagstaff AZ 86001 
 

ABSTRACT 
After motivating the investigation by looking at past approaches, we present LabVIEW 
examples that demonstrate messaging using objects, an implementation of the Command 
Pattern, specifically for an XML configuration files utility, and an implementation of the 
State Pattern, including an example deployed on a real-time target.  In addition we briefly 
mention the concept of Model/View/Controller.  In an appendix we compare these 
solutions to selected popular approaches. 

1. First, some history 
I think it is useful to motivate the discussion by explaining a bit about how we have 
arrived where we are. 

1.1. “LCOD” 
I started to think seriously about these issues after reading A Software Engineering 
Approach to LabVIEW1, which introduced me to “LabVIEW Component-Oriented 
Design” (LCOD).  While I don’t remember everything in the book (and I no longer have 
access to it), I do remember that the authors stressed the concepts of high cohesion 
(although I don’t recall if the authors used this term for it or not) and loose coupling.  In 
the broadest terms these mean 1) keep things together that logically belong together and 
2) separate things that are logically separable. 
 
I started from the examples and began an implementation of a component-oriented 
system using such an approach. 
 
First, I understood each component should operate independently of its peers.  So I 
created parallel loops with queue-based communication between them. 
 
Then I focused on the message content.  A particular queue can send a message of a 
single Type.  One can send all the Boolean-typed messages, for instance, on one queue—
but this isn’t a logically convenient grouping at all, of course.  So I decided to explore (as 
have others) sending messages with queues configured to send Variant-typed messages.  
On this model the sender flattens the message data to a Variant on one end and the 
receiver unflattens it to the original type on the other.  To do this the receiver must know 
the message type, so I defined a high-level typedef for the message that consisted of 1) a 
string with the message name and 2) a variant with the message content.  The receiver 
looks up the message content type based on the message name. 

                                                 
1 J Conway, J., & Watts, S. (2003). A Software Engineering Approach to LabVIEW (National Instruments 
Virtual Instrumentation Series) (1 ed.). Upper Saddle River: Prentice Hall PTR. 



July 15, 2010 2  

 
An extension I tried is to write the data to a functional global variable (FGV) or a set of 
FGVs.  Now a functional global variable can have some behavior besides reading and 
writing its data, and those kinds of FGVs some developers call action engines.  An FGV 
can perform some operations with or on its data, possibly changing state as a result. 
 
Anyway, this was the first major step toward our current situation.  I will attempt to 
explain how and why we moved from this to where we are, and explain why I think our 
current solution is a logical progression from this. 

1.2. Object-Oriented analysis, design patterns, and  Java 
messaging 
The next step in my journey was reading Applying UML and Patterns: An Introduction to 
Object-Oriented Analysis and Design and Iterative Development2.  The author talked a 
good deal about the principles of high cohesion and loose coupling (among others), but 
now in an Object-Oriented context, and included a discussion on design patterns.  The 
concept of a software component plays a leading role in this book as well, but now it 
becomes easier to see how to implement such a thing. 
 
In the world of objects we design for high cohesion and loose coupling by assigning 
responsibility for closely related behaviors (that is, operations) to an object.  As far as is 
practicable the object owns the data it needs to perform its operations. 
 
I read more about design patterns in Design Patterns: Elements of Reusable Object-
Oriented Software3 (a brilliant book that started the design patterns field).  It turns out 
that formal design patterns offer some advantages. 

·  One doesn’t need to invent a design pattern—a design pattern by definition is 
something that others have used successfully—and carefully described the 
implementation. 

·  There is a catalog (actually catalogs) of design patterns, in which each has a 
name, guidance on how and when to use it, and an example. 

o Why is this important?  Well, because: 
�  Everyone in the field knows what we mean when we say State 

Pattern. 
�  There is collective effort on refining the implementation of the 

patterns, instead of each developer trying to perfect his or her own 
things. 

I think these are incredibly important benefits to using these Design Patterns. 
 
Notes: 

                                                 
2 Larman, C. (2004). Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design 
and Iterative Development (3rd Edition) (3 ed.). Upper Saddle River: Prentice Hall PTR. 
3 Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (2005). Design Patterns. Toronto: Addison Wesley. 



July 15, 2010 3  

·  Design Patterns are not always “simple.”  Some are highly stylized.  They are, I 
think, generally efficient and elegant, and so far I have found that they are pretty 
simple to implement once I understand them. 

·  Design Patterns are not libraries one can call, but patterns one can follow.  They 
are reusable in that they offer mature ways of doing things. 

·  Design Patterns are appropriate when they are applicable.  We shouldn’t attempt 
to use them for everything! 

 
A component is a replaceable module that encapsulates it contents and defines its 
behavior via an interface.4 
 
Finally I read about Java messaging systems that allow applications to send objects as 
messages.  Object messages can be arbitrarily complex and have very precise definitions 
in an inheritance structure (we will see why this is so important in a minute).  Moreover, 
we can decouple the message content (objects) from the messaging system, which I think 
is a subtle but extremely important point. 
 
I decided there was considerable power in all of these and decided to see if I could do the 
same sort of thing in LabVIEW, noting that the common denominators for creating 
scalable systems seemed to be to encapsulate data and behavior in components and to 
enable some sort of messaging between these. 

2. Current examples 
Now we present some examples of what we have learned to do with objects in LabVIEW. 

2.1. Object-Oriented messaging in LabVIEW 
After some false starts I figured out a way to send objects in LabVIEW by flattening 
them.  The key points follow. 

2.1.1. Send messages using networked shared variabl e 
communication (or other messaging system) 
We decided to use networked shared variables to handle the messages.  This isn’t strictly 
necessary to send objects, of course—one can use TCP/IP methods, queues, or just about 
anything, because the messaging paradigm is independent of the content, but we will 
discuss the design in this context.   
 
We are implementing a component-oriented design.  It’s nice if we can implement a 
component in its own loop, nicer if it resides in its own method, still better if we can 
define that method on a class defining the component, and even better if we can deploy it 
anywhere.  To decouple our components as much as possible we want our components to 
be runnable anywhere (motivating networked communication) and communicate without 
knowing anything about the other components or implementing a server (motivating a 
publish-subscribe paradigm). 
 
                                                 
4See Larman, p. 654. 



July 15, 2010 4  

Briefly, we think shared variables offer the following advantages: 
·  Shared variables are the closest thing in LabVIEW to a ready-made 

implementation of something akin to the Object-Oriented Observer Pattern 
(publish-subscribe communication).  [Briefly, the use of a publish-subscribe 
paradigm allows us to implement stand-alone components, each of which has its 
own state machine that responds to data received asynchronously on topics to 
which it subscribes, and it publishes data to which one or more components may 
subscribe.  A message broker handles all subscriptions and message passing, so 
the components interface only in terms of data.  One component need not know 
that another component even exists.] 

·  Shared variables are part of LabVIEW—we don’t need to spend valuable 
application development time creating our own messaging system (which can be 
very expensive to do well!).  Hopefully this also means National Instruments 
maintains the implementation, fixing bugs and adding features. 

·  The shared variable API easily lets us decouple the messaging system 
implementation from the application code. 

·  Networked shared variables work just the same from the code point of view 
whether we deploy the communicating applications on the same machine or at 
different locations on a network.  This means my controller can respond to a 
message sent from a GUI on the same machine or a different machine, or from 
another software component running anywhere on the network.  This turns out to 
be incredibly powerful (at least if security concerns don’t prevent using this).5 

·  In our case we have the Datalogging and Supervisory Control (DSC) module, 
which gives us a built-in logging solution, among other things.  (Again, writing as 
good a logger would be very difficult.  I’m certainly glad we’re not trying to 
maintain the Citadel code.) 

·  Finally, again with the DSC module, applications can handle shared variable 
value change events.  [Aside: I certainly think this particular functionality should 
be part of the LabVIEW core, and I think it would be to NI’s advantage to make it 
so.  How can someone have access to shared variables but not shared variable 
value change events?  If more NI customers successfully created component-
based applications using shared variables, I suggest NI would sell more LabVIEW 
licenses.] 
 

Now there are some disadvantages to shared variables, notably that the shared variable 
engine and the Citadel historical database still aren’t the most robust things ever and in 
my opinion the various APIs are lacking in consistency and usability in some respects, so 
I want to stress this is a good (and improving) but not a perfect solution.  On the other 
hand shared variable performance (speed and reliable message delivery) is really quite 
good now that they use TCP. 

                                                 
5 Note that we can point to the URL for a shared variable in a different project, so we can put our 
components in independent projects if we wish (and we often do!). 



July 15, 2010 5  

2.1.2. Flatten the object 
Each shared variable has exactly one type (much like a queue), and while LabVIEW does 
allow developers to select a custom type, that type cannot be a LabVIEW class type.  
So…we flatten the LabVIEW object we want to publish—to XML or simply a string6.  
[Note: XML is human-readable but I recently encountered the issue that the Flatten To 
XML and Unflatten From XML functions don’t work correctly if the class definitions 
reside in a LabVIEW library (.lvlib).  Using the Flatten To String and Unflatten From 
String functions is currently more robust.  Hopefully NI will improve the implementation 
of XML in this and other ways in the near future.  This is actually at the top of my list of 
desired new features.] 

2.1.3. Unflatten the object 
Much like the queue with variants method, the receiver must unflatten the message to a 
specific type.  So (as we’ll show), the receiver must know: 

·  the type of data associated with the message 
·  the definition of that type. 

2.1.3.1. Know the type 
Now here is where things really start to get cool.  The receiver only has to know the 
generic type of the message.  In particular, we can generalize a parent message class and 
the recipient can cast the received message (one of the children) to the parent type.  An 
example (see under the Command Pattern Example) will make this much clearer. 

2.1.3.2. Share the definitions 
We address the definition question by storing the definitions in a single location under 
version control.  As long as we build the sender and receiver applications using the same 
version of the shared definitions (which is the natural thing to do) we know the two can 
understand one another. 
 
OK, now let’s see object messaging in action in a real example. 

2.2. Command Pattern Example 

2.2.1. A command is an object 
In the Command Pattern each command is an object.  There is an abstract (never 
instantiated) class that represents the top-level command and then child classes that 
represent the actual commands that we can send (possibly with some layers in between).  
For an example I offer a portion of the command hierarchy for an XML-based 
configuration files editor I created: 

                                                 
6 This approach doesn’t work with RT-FIFO-enabled shared variables since these don’t support the String 
type.  



July 15, 2010 6  

 
 
The leaf classes on the bottom row are the actual implemented commands.  (Note that 
each command class has Command in the name.) 

2.2.2. Sending the command 
So, how does the application work?  Let’s say a user clicks the Save button on the user 
interface.   
 



July 15, 2010 7  

 
 
The user interface code handles that event and publishes the SaveCommand object to a 
shared variable (flattening it first—to the most general type for the topic). 
 

 
Simple enough, right? 
 

2.2.3. Dynamic dispatching on the command type 
Upon receipt of the message the receiver unflattens the received message to the type of 
the top-level command, that is, to ConfigurationCommand.  (The resulting actual type on 
the wire will be of type SaveCommand, however!)  (In this example the reception is a 
shared variable value change event.) 
 
The receiver then invokes the ConfigurationCommand:execute method.    Since we have 
defined execute as an override method on each of the command classes, dynamic 
dispatching on the command object type determines which method actually executes 
(SaveCommand:execute, in this example). 



July 15, 2010 8  

 
 

 
Note that the override methods may inherit common behavior from a parent or (as in this 
case) do completely their own thing. 

2.2.4. Add targets and parameters 
Moreover, we can add data (e.g., targets or command parameters) to the commands very 
easily—and the data type can be unique to each command class! 
 
For instance, let’s say we have a controller that performs the same operation for a number 
of devices.  Perhaps our controller can turn on DeviceA or DeviceB.  We might indicate 
to turn on DeviceA by including a DeviceA object in an attribute in the TurnOnCommand. 



July 15, 2010 9  

 
In the example above we have included the shutDownIsTrue Boolean parameter in all 
commands, and the data attribute (of type ConfigurableData, which itself has a fairly 
complex definition) for all SingleTargetCommands. 
 
The flexibility offered by the generalization (inheritance) relationship allows us to make 
this highly customizable.  In a parallel part of the hierarchy MacroCommand has a 
subcommand parameter, where subcommand is an array of SingleTargetCommand 
command objects. 
 

 
 
 
Note that in this case we are writing all types of commands with any type of data (which 
could include the device to which the command applies) to a single shared variable and 
that a single controller can handle all these messages appropriately. 
 
The Command Pattern further allows the developer to implement undo functionality and 
so on, but I think this example is sufficient to show the essence of the pattern. 

2.2.5. Delegation 
One last point on the Command Pattern is that the Controller determines what to do, but 
then delegates all the actual work to the Model (in this case ConfigurableData). 



July 15, 2010 10  

 
 

2.3. XML configuration files application 
In the end we have a code library we can reuse in various projects. 

An object of type 
ConfigurableData constitutes 
the Model. 



July 15, 2010 11  

 
 
When we create a new component we define the parameter definitions and create a new 
shared variable.  The rest of the configuration files application code is common. 



July 15, 2010 12  

 
 
The application writes an XML file (currently using LabVIEW’s native XML tools) for 
the parameters on each tab.  (Note that we are using XML here just for reading and 
writing files, not for communication.) 



July 15, 2010 13  

 

2.4. State Pattern Example 
We’ll next present an example of implementing a statemachine using the State Pattern. 

2.4.1. Component statemachine 
In this example we will consider a statemachine for the high-level status of each 
component.  The statemachine diagram below shows the possible states and transitions.7  
(In our system each component also has a detailed statemachine with states peculiar to it.) 

                                                 
7 Maybe we should have included a StartupState between StandbyState and DisabledState.  I’m on the 
fence about that. 



July 15, 2010 14  

 

2.4.2. Each state is a class 
Once we have defined the states, we implement a class for each state.  Each class has 
State in the name.  Each state implements an execute method with a single parameter.  
That parameter (of type ComponentData in the example) is the Model. 
 
Note that child classes extend the execute method for reuse or override.  This means we 
can define common functionality only once on the parent, but we can customize behavior 
in any child without affecting any of its peers or ancestors in any way.  (In this example 
we have only one level of inheritance; more we use multiple levels.) 

 



July 15, 2010 15  

2.4.3. Dynamic dispatch on the state type 
To implement the Controller statemachine we do the following: 

1. Initialize the Model with the initial state.  In the example the initial state is 
StandbyState, so we write the corresponding object to the Model. 

2. On each loop iteration, the Controller uses the current value of the Model (hence 
the current state of the system). 

3. The Controller reads from the Model the current state (as an object). 
4. The controller invokes the execute method on the top-level state.  The method that 

executes is that for the actual state object type on the wire.  (So 
StandbyState:execute will execute in the first loop iteration in our example.) 

 
 
Note that inside the execute method we set the value of the next state by updating the 
state object in the Model as necessary. 

2.4.4. Delegate 
The controller passes the current value of Model (the current state of the system) to the 
execute method.  The execute method decides what to do but it delegates all the actual 
work to the Model, which has the information required to do the work and can change 
and track its own state as necessary. 



July 15, 2010 16  

 
 

2.4.5. Exchange data via interfaces 
This code executes in one loop iteration.  (The execute method is called inside a loop.  In 
this example the code is running on the RT processor of a compactRIO and the loop starts 
upon the receipt of an interrupt from the FPGA.)  The Model (state) enters on a wire on 
the left.  (It comes from a shift register on the loop outside.)  We read the shared variable 
values (we have defined the shared variables to which this component subscribes in an 
interface definition) and data from the FPGA at the beginning of the loop (or wherever 
we want, really—the point is we explicitly read them once each loop), act on the system 
appropriately, then write values to another set of shared variables to which this 
component publishes data and to the FPGA.  The Model state can change in the process, 
but we can look at the code and understand where this happens and probe the Model if 
we want to see the current state.  Of course the shared variables themselves—which 
together form the external interface--connect to external systems without dataflow, but 
interactions between the shared variables and the model are always via wires. 
 

The Model object encapsulates 
its data and behaviors. 



July 15, 2010 17  

 

2.4.6. Handle triggers 
Within the controller we can evaluate any triggers, changing state if appropriate (by 
writing the state object for the next state to the Model). 

 
 
 
 
 

2.5. Model/View/Controller 
Since we mentioned these terms they deserve a brief note.  We implement the View (e.g., 
the user interface) as a separate application from the Controller.  This allows us to create 

Evaluate trigger Change state if 
appropriate 

Read external data (defined on 
interface) here… 

and write data here. 



July 15, 2010 18  

an alternative view or even an external component that can implement the Controller 
interface. 
 
The Controller invokes methods on the Model.  (The Model data represents the state of 
the system and it has operations to do things with that data.) 

 
 

2.6. Appendix: Comparison with queue and functional  global 
variable implementations 
How does this approach compare to some other popular solutions?  This section 
speculates on some possible comparisons.  The intent is to stimulate discussion. 

2.6.1. Queues 
I actually think queues offer a reasonable messaging option, but are just not as flexible as 
shared variables.  One reason I prefer shared variables is because the topic already 
associates to a type, which I think makes shared variables easier to manage. 

 
 
 
Moreover, I think shared variables offer all features queues do except for the ability to 
reorder messages in the queue.  In the applications we write this feature just isn’t 
necessary since our Controllers always return in one loop time to handle the next 
message.  (This is essential for our Controllers to operate effectively asynchronously.  So 
if an axis move starts the axis controller state might be MovingState, but the controller 
keeps looping so it can still receive a stop command; it doesn’t wait for the axis to finish 
the move before going to the next loop!) 
 
Effectively our statemachine controllers implement the preemptive mechanism.  For 
instance, if an axis is moving and the controller receives a stop command, the controller 
stops the axis; it doesn’t wait for the move to finish. 
 

The ConfigurableData Model 
class does the real work. 

Boolean shared variable named 
“EnableMotionIsTrue” 



July 15, 2010 19  

Next, shared variables can work across a network (queues don’t) and I think this is a 
major advantage. 
 
Finally, using a publish-subscribe protocol allows further decoupling of the components 
from one another and from the messaging system.  The shared variable engine handles all 
the connections. 

2.6.2. Functional global variables and “action engi nes” 
I first saw a functional global variables (FGV) in code I inherited about a decade ago.  At 
first FGVs confused me.  Then I figured them out and I was still confused when I tried to 
understand how they worked in a particular application.  Writing this document helped to 
clarify why. 
 
I already knew that I wasn’t especially fond of the API for functional global variables 
(they look like regular VIs on the outside, although of course one can customize the icon; 
one often has to specify both an operation and the parameters via at least two inputs, 
which just takes a bit longer to comprehend; it is a lot of work to make the inputs 
polymorphic and clumsy to write a single value in a cluster as an alternative; it takes a 
somewhat sophisticated developer just to understand the point  of using uninitialized shift 
registers with a single-iteration loop).  No one of these API concerns, though, constitutes 
my biggest confusion point. 
 
Let’s illustrate what I think is the biggest issue by putting a functional global variable in a 
loop in myApplication. 

 
 
Suppose someone gave us this code and the code for myFGV.  (The “actions” are write, 
read, increment, and decrement.) 



July 15, 2010 20  

 
 
Then this person asked us what the expected behavior is.  We might answer that the value 
on the chart on each iteration will be one integer value larger than on the last.  This will 
be correct, in fact, if myApplication is the only application running.  On the other hand, it 
is entirely possible some application somewhere else is changing the state of the system.  
The increment action implicitly includes read and write actions. 

 
 
 
We can implement this “action engine” simultaneously in other applications, and each of 
these can change the state.   As examples, I created otherApp and otherApp2, either of 
which can change the state.  The implementation of otherApp is 

read write 



July 15, 2010 21  

 
 
and of otherApp2 is 

. 
 
Well, in order to know what the output will be I have to know that otherApp and 
otherApp2 exist, whether or not they are running, and the details of what they do—not 
just the read and write actions but also the increment and decrement actions and any other 
arbitrarily complex actions we add, as well as when they do these actions. 
 
This in itself isn’t necessarily bad, actually.  I might say that myApplication is just 
reading a value on an interface every 500 ms and incrementing that value.  We could 
make the Object-Oriented equivalent. 

 
 
On the other hand, let’s say we wanted to do two operations on the data. 



July 15, 2010 22  

We can do this easily enough with objects. 

 
 
We can try this with FGVs (but in a moment we will explain why this is not suitable.) 

 
 
Or maybe we want to use this functionality without an external interface. 
 
Again, we can implement an Object-Oriented solution. 

 
 
We can again attempt a solution with FGVs. 



July 15, 2010 23  

 
 
These applications are simple to implement with by-value objects but the functional 
global variable approach is not appropriate for either of these needs. 
 
Strictly speaking, it is possible to code something with a functional global variable (as 
shown) that can work in these instances but since functional global variables do not use 
dataflow 

1) One has to use sequence structures, error wires, or some similar mechanism to 
ensure things happen in the proper order (inconvenient but certainly not a deal 
breaker).  More importantly, 

2) The implicit read and write functions in every call to the FGV mean that the state 
of the model can change at any time via a call to the FGV anywhere in scope. 
 

The consequence is that just when we thought we had encapsulated the data and behavior 
we found we don’t have encapsulation at all. 
 
It doesn’t take much before this gets out of hand and we don’t know what the application 
does unless we have achieved a certain level of omniscience with respect to the 
implementation of all the applications.  Now omniscience may be a good thing, but it is 
not something I possess or want another developer to expect of me, so I try not to expect 
it of anyone who might read my code. 
 
I think that the problem with “action engine” FGVs is that we have mixed 
communication and operations.  We can’t meaningfully create an interface for 
myApplication or its kin and as a consequence we can’t turn it into a proper component. 
 
In practice, I think FGVs are OK (although still not the best option because of the 
limitations of the API) as long as we just use them as global variables (their original 
purpose), that is, for communication.  Once we mix other state-changing actions in them 
we obfuscate the application code, precisely because we violate the principles of tight 
cohesion and loose coupling in a very bad way—we have to know what every other 
application in scope is capable of doing! 
 



July 15, 2010 24  

I think LabVIEW by-value objects offer a much better approach to encapsulation, and I 
think the LabVIEW object API makes these a lot easier to develop and maintain. 
 
Moreover, LabVIEW objects support inheritance, which offers a great deal more power 
and flexibility.  They also have the advantage of being a leading programming paradigm. 
 
Since we have begun using LabVIEW objects with a messaging system here, we no 
longer use FGVs anywhere in our applications. 


